Linear Multifractional Stable Motion: Wavelet Estimation of H(·) and α Parameters*
نویسندگان
چکیده
منابع مشابه
Scaling Properties of the Empirical Structure Function of Linear Fractional Stable Motion and Estimation of Its Parameters
متن کامل
Wavelet-Based Fluid Motion Estimation
Based on a wavelet expansion of the velocity field, we present a novel optical flow algorithm dedicated to the estimation of continuous motion fields such as fluid flows. This scale-space representation, associated to a simple gradient-based optimization algorithm, naturally sets up a well-defined multi-resolution analysis framework for the optical flow estimation problem, thus avoiding the com...
متن کاملStochastic integral representation and properties of the wavelet coe cients of linear fractional stable motion
Let 0¡ 62 and let T ⊆R. Let {X (t); t ∈ T} be a linear fractional -stable (0¡ 62) motion with scaling index H (0¡H ¡ 1) and with symmetric -stable random measure. Suppose that is a bounded real function with compact support [a; b] and at least one null moment. Let the sequence of the discrete wavelet coe cients of the process X be { Dj;k = ∫ R X (t) j;k(t) dt; j; k ∈ Z } : We use a stochastic i...
متن کامل2D Shape Classification Using Multifractional Brownian Motion
In this paper a novel approach to contour-based 2D shape recognition is proposed. The main idea is to characterize the contour of an object using the multifractional Brownian motion (mBm), a mathematical method able to capture the local self similarity and long-range dependence of a signal. The mBm estimation results in a sequence of Hurst coefficients, which we used to derive a fixed size feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lithuanian Mathematical Journal
سال: 2015
ISSN: 0363-1672,1573-8825
DOI: 10.1007/s10986-015-9272-1